LogDynamics
Projekte
School
Lab
LDIC
Doctoral Workshop
Bild verbergen/Bild anzeigen
Newsletter
Kontakt
Impressum
LogDynamics
›
Publikationen
›
Papers
› Contributions to Conferences
LogDynamics
Ziele
Historie
Mitglieder
Publikationen
Papers
Contributions to Journals
Contributions to Conferences
Contributions to Collections
Books
Theses
Studies
Public Relations
Presse
Aktuelles
Suche
Contributions to Conferences
back
A Universal Error Measure for Input Predictions Applied to Online Graph Problems
Authors
Bernardini, G.
Lindermayr, A.
Marchetti-Spaccamela, A.
Megow, N.
Stougie, L.
Sweering, M.
Meta information
[BibTeX]
Year: 2022, Reviewed
In: NeurIPS 2022
Pages: 1-35
DOI:
10.48550/arXiv.2205.12850
Bernardini, G.; Lindermayr, A.; Marchetti-Spaccamela, A.; Megow, N.; Stougie, L.; Sweering, M.
A Universal Error Measure for Input Predictions Applied to Online Graph Problems
In: NeurIPS 2022. 2022, pp. 1-35
(Workgroup:
CSLog
)
BibTeX
Close
@inproceedings{Ber22b, author = {Bernardini, G. and Lindermayr, A. and Marchetti-Spaccamela, A. and Megow, N. and Stougie, L. and Sweering, M.}, title = {A Universal Error Measure for Input Predictions Applied to Online Graph Problems}, booktitle = {NeurIPS 2022}, year = {2022}, editor = {}, publisher = {}, doi = {10.48550/arXiv.2205.12850}, pages = {1-35} }
Download as .bib