The general view of flow networks controlled by periodic devices provides a powerful unifying language for diverse fields of application. Recent publications on traffic control have presented strategies for adaptive flow control. For adapting this view to production logistics two improvements are necessary: A discussion of more general network architectures than in traffic and a generalization towards more sophisticated performance measures beyond waiting time. Our simulation study illustrates how strongly parameter variation influences the logistic performance and we show whether the promising findings from traffic control regarding waiting time reduction and the emergence of synchronized behavior can be reproduced for production logistics.